Presence of electrolyte promotes wetting and hydrophobic gating in nanopores with residual surface charges.

نویسندگان

  • Laura Innes
  • Diego Gutierrez
  • William Mann
  • Steven F Buchsbaum
  • Zuzanna S Siwy
چکیده

Hydrophobic nanopores provide a model system to study hydrophobic interactions at the nanoscale. Such nanopores could also function as a valve since they halt the transport of water and all dissolved species. It has recently been found that a hydrophobic pore can become wetted i.e. filled with condensed water or an aqueous solution of salt when a sufficiently high electric field is applied across the membrane. The wetting process is reversible thus when the voltage is lowered or switched off, the pore comes back to a closed state due to water evaporation in the pore. In this manuscript we present experimental studies on how the switching between conducting and non-conducting states can be regulated by the electrolyte concentration. Transport properties of single nanopores modified with alkyl chains of different lengths were recorded in salt concentrations between 10 mM and 1 M KCl. Nanopores modified with propyl chains exhibited gating in 10 mM KCl and were open for ionic transport for all voltages at higher salt concentrations. Nanopores modified with decyl chains did not conduct current in 10 mM and exhibited repeatable hydrophobic gating in 100 mM and 1 M KCl. The results are explained in the context of Maxwell stress in confined geometry with local surface charges, which change the shape of the water-vapor interface and promote wetting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular simulation studies of hydrophobic gating in nanopores and ion channels.

Gating in channels and nanopores plays a key role in regulating flow of ions across membranes. Molecular simulations provide a 'computational microscope' which enables us to examine the physical nature of gating mechanisms at the level of the single channel molecule. Water enclosed within the confines of a nanoscale pore may exhibit unexpected behaviour. In particular, if the molecular surfaces...

متن کامل

Wettability Study of Super-Hydrophobic Silica Aerogel Powders

Due to the importance of super-hydrophobic silica aerogel powder as a material in the field of energy saving, its wettability in the presence of various surfactants was investigated. One anionic and two non-ionic surfactants with different molecular structures were used as wetting and dispersing agents. Wetting properties of the aerogel powders were investigated by the contact angle measure...

متن کامل

Giant Osmotic Pressure in the Forced Wetting of Hydrophobic Nanopores.

The forced intrusion of water in hydrophobic nanoporous pulverulent material is of interest for quick storage of energy. With nanometric pores the energy storage capacity is controlled by interfacial phenomena. With subnanometric pores, we demonstrate that a breakdown occurs with the emergence of molecular exclusion as a leading contribution. This bulk exclusion effect leads to an osmotic contr...

متن کامل

Dynamic contact angles on PTFE surface by aqueous surfactant solution in the absence and presence of electrolytes.

This study presents the experimental results on dynamic contact angles of pure surfactants and surfactants with electrolyte solutions on PTFE (Teflon) surface. Dynamic advancing (theta(A)) and receding (theta(R)) contact angles measurements by the Wilhelmy plate technique were carried out for aqueous solution of three different surfactants Triton X-100 (TX-100), sodium dodecylbenzene sulfonate ...

متن کامل

A hydrophobic entrance enhances ion current rectification and induces dewetting in asymmetric nanopores.

Hydrophobic interactions and local dewetting of hydrophobic cavities have been identified as a key mechanism for ionic gating in biological voltage-gated channels in a cell membrane. Hydrophobic interactions are responsible for rectification of the channels, i.e. the ability to transport ions more efficiently in one direction compared to the other. We designed single polymer nanopores with a hy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Analyst

دوره 140 14  شماره 

صفحات  -

تاریخ انتشار 2015